trivial$85294$ - ترجمة إلى اليونانية
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:     

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

trivial$85294$ - ترجمة إلى اليونانية

DESCRIPTION TO WHAT EXTENT A MATHEMATICAL STATEMENT OR COMPLICATION CAN BE DISREGARDED DUE TO SIMPLICITY
Nontrivial; Non trivial; Non-trivial; Trivial solution; Trivial (mathematics); Trivial case

trivial      
adj. ασήμαντος, μηδαμινός
aliquot part         
  • Plot of the number of divisors of integers from 1 to 1000. [[Prime number]]s have exactly 2 divisors, and [[highly composite number]]s are in bold.
  • 350px
INTEGER THAT WHOLLY DIVIDES ANOTHER INTEGER
Divisibility; Divides; Proper divisor; Proper factor; Divisors; Aliquant; Aliquot part; Aliquant divisor; Aliquot divisor; Divisible; ∣; Proper factors; Proper divisors; Draft:Divisibility rule for 14; Aliquant part; Trivial divisor; Non-trivial divisor; Evenly divisible; Nontrivial divisor
υποπολλαπλασίο

تعريف

Unlink
·vt To separate or undo, as links; to Uncoil; to Unfasten.

ويكيبيديا

Triviality (mathematics)

In mathematics, the adjective trivial is often used to refer to a claim or a case which can be readily obtained from context, or an object which possesses a simple structure (e.g., groups, topological spaces). The noun triviality usually refers to a simple technical aspect of some proof or definition. The origin of the term in mathematical language comes from the medieval trivium curriculum, which distinguishes from the more difficult quadrivium curriculum. The opposite of trivial is nontrivial, which is commonly used to indicate that an example or a solution is not simple, or that a statement or a theorem is not easy to prove.

The judgement of whether a situation under consideration is trivial or not depends on who considers it since the situation is obviously true for someone who has sufficient knowledge or experience of it while to someone who has never seen this, it may be even hard to be understood so not trivial at all. And there can be an argument about how quickly and easily a problem should be recognized for the problem to be treated as trivial. So, triviality is not a universally agreed property in mathematics and logic.